This course introduces survival models and discusses their estimation and their application to mortality. Topics covered will include: survival models; estimation procedures for lifetime distributions; statistical models of transfers between multiple states; maximum likelihood estimation of transition intensities for such models; binomial model of mortality including estimation and comparison with multiple state models.
Learning Outcomes
Upon successful completion, students will have the knowledge and skills to:
- Communicate in detail the concept of survival models.
- Describe in detail the estimation procedures for lifetime distributions.
- Implement complex statistical models of transfer between multiple states, including processes with single or multiple decrements, and derive relationships between probabilities of transfer and transition intensities.
- Derive maximum likelihood estimators for the transition intensities in complex models of transfers between states with piecewise constant transition intensities.
- Comprehensively describe how to estimate transition intensities depending on age, exactly or using the census approximation.
- Communicate in detail how to test crude estimates for consistency with a standard table or a set of graduated estimates, and describe the process of graduation.
Research-Led Teaching
This course involves an intermediate level of programming with R, including model fitting, graphical analysis and forecasting. In the lectures and computer labs (from week 2 to week 8), we will use real-life datasets to demonstrate the applications of Survival Models in R. Apart from that, additional research articles including journal publications will be provided. Those articles are good examples of how to use appropriate techniques of Survival Models to analyse and solve research questions step-by-step.
Examination Material or equipment
The mid-semester and final exam will be centrally timetabled by Examinations, Graduations and Prizes prior to the examination period. Please check ANU Timetabling for further information. You will require a non-programmable scientific calculator for the duration of the exam. No dictionaries are allowed. Details of the examination materials and conditions will be noticed to all students via Wattle and the examinations office.
Required Resources
Lecture notes and other course materials will be updated weekly with the progress of this course on Wattle.
Staff Feedback
Students will be given feedback in the following forms in this course:
- Tutorial solutions and discussions.
- individual and small group lecturer consultations.
- To the whole class during lectures.
Student Feedback
ANU is committed to the demonstration of educational excellence and regularly seeks feedback from students. Students are encouraged to offer feedback directly to their Course Convener or through their College and Course representatives (if applicable). Feedback can also be provided to Course Conveners and teachers via the Student Experience of Learning & Teaching (SELT) feedback program. SELT surveys are confidential and also provide the Colleges and ANU Executive with opportunities to recognise excellent teaching, and opportunities for improvement.
Other Information
Scaling
Your final mark for the course will be based on the raw marks allocated for each assignment or examination. However, your final mark may not be the same number as produced by that formula, as marks may be scaled. Any scaling applied will preserve the rank order of raw marks (i.e. if your raw mark exceeds that of another student, then your scaled mark will exceed or equal the scaled mark of that student), and may be either up or down.
Support for Students
The University offers a number of support services for students. Information on these is available online from http://students.anu.edu.au/studentlife/
Technology, Software and Equipment
This course involves intermediate level of programming with R, which is a powerful and free statistical package widely used by industrial professionals and academics.
Co- Teaching
STAT3032/STAT4072/STAT6042 will be taught jointly. There may be some material which is only relevant to some of these codes. This will be clearly identified during the lecture and/or tutorial. The different cohorts of students will also be treated separately in grading and any scaling that is applied.
Class Schedule
Week/Session | Summary of Activities | Assessment |
---|---|---|
1 | Data Types, Introduction to Survival Models, Life Tables | |
2 | Introduction to Parametric Survival Models | |
3 | Estimation Methods for Parametric Models/ Introduction to Non-parametric Approach | |
4 | Introduction to Censored Data and Kaplan-Meier Estimation | Assignment 1 due by 3pm on Friday of Week 4 |
5 | Kaplan-Meier (continued) / Nelson Aalen Estimation / Cox Regression | |
6 | Cox Regression (continued) | Mid Semester Exam in either Week 6 or Week 7. |
7 | Two State Models / Multistate Models | Mid Semester Exam in either Week 6 or Week 7 |
8 | Multi State Models (continued) | |
9 | Mortality Graduation, Smoothing and Forecasting | Assignment 2 due by 3pm on Friday of Week 9 |
10 | Mortality Graduation, Smoothing and Forecasting (continued) | |
11 | Mortality Graduating, Smoothing and Forecasting (continued) | |
12 | Introduction to Census Method, Exposed to Risk and Rate Intervals | There will be a final exam during the university examination period. More information and instructions regarding the exam will be provided no later than week 10 on Wattle |
Tutorial Registration
Tutorials will be held weekly (starting from Week 2). Tutorials will be available on campus. Students should enroll in their tutorial using MyTimetable. Find out more on the Timetable webpage (https://www.anu.edu.au/students/program- administration/timetabling).
Assessment Summary
Assessment task | Value | Due Date | Return of assessment | Learning Outcomes |
---|---|---|---|---|
Assignment 1 | 10 % | 14/03/2025 | 28/03/2025 | 1, 2 |
Mid Semester Exam | 25 % | 24/03/2025 | 02/05/2025 | 1, 2 |
Assignment 2 | 10 % | 02/05/2025 | 16/05/2025 | 1, 2 |
Final Exam | 55 % | 29/05/2025 | 26/06/2025 | 1, 2, 3, 4, 5, 6 |
* If the Due Date and Return of Assessment date are blank, see the Assessment Tab for specific Assessment Task details
Policies
ANU has educational policies, procedures and guidelines , which are designed to ensure that staff and students are aware of the University’s academic standards, and implement them. Students are expected to have read the Academic Integrity Rule before the commencement of their course. Other key policies and guidelines include:
- Academic Integrity Policy and Procedure
- Student Assessment (Coursework) Policy and Procedure
- Extenuating Circumstances Application
- Student Surveys and Evaluations
- Deferred Examinations
- Student Complaint Resolution Policy and Procedure
- Code of practice for teaching and learning
Assessment Requirements
The ANU is using Turnitin to enhance student citation and referencing techniques, and to assess assignment submissions as a component of the University's approach to managing Academic Integrity. For additional information regarding Turnitin please visit the Academic Skills website. In rare cases where online submission using Turnitin software is not technically possible; or where not using Turnitin software has been justified by the Course Convener and approved by the Associate Dean (Education) on the basis of the teaching model being employed; students shall submit assessment online via ‘Wattle’ outside of Turnitin, or failing that in hard copy, or through a combination of submission methods as approved by the Associate Dean (Education). The submission method is detailed below.
Moderation of Assessment
Marks that are allocated during Semester are to be considered provisional until formalised by the College examiners meeting at the end of each Semester. If appropriate, some moderation of marks might be applied prior to final results being released.
Participation
Course content delivery will take the form of on-campus lectures (with recordings available via echo360 on Wattle) and weekly on-campus tutorials. Participation is strongly encouraged in tutorials.
Attendance at lectures and tutorials, while not compulsory, is expected in line with “Code of Practice for Teaching and Learning”, clause 2 paragraph (b).
Examination(s)
Any student identified, either during the current semester or in retrospect, as having used ghost writing services will be investigated under the University’s Academic Misconduct Rule. Centrally scheduled examinations through Examinations, Graduations & Prizes will be timetabled prior to the examination period. Please check ANU Timetabling for further information.
Assessment Task 1
Learning Outcomes: 1, 2
Assignment 1
Students are required to complete this assignment individually. This assignment is designed to cover materials from Week 1 to 2. It will involve obtaining suitable life table data, performing exploratory data analysis using R, and writing a report. Assignment 1 will be made available on Wattle by 3:00 pm on 28 February 2025 and it is to be submitted online on Wattle via Turnitin. The assignment is worth 10% of the overall score in the course and is compulsory. The assignment will be due in Week 4 by 3:00 pm on Friday 14 March. The assignment marks will be returned via Wattle by 28 March. Short individual feedback may be given with marks and may be available from the tutor by appointment. Submission of the assignment after the due date will not be permitted unless an extension has been granted. If the assignment is not submitted by the due date, a mark of 0 will be awarded.
Assessment Task 2
Learning Outcomes: 1, 2
Mid Semester Exam
The mid-semester exam is worth 25% of the overall score in the course and will be held over the week 6/7 period. The mid-semester exam is redeemable. An assessment is redeemable if, when a student performs better in the final exam than in the assessment, then the final exam mark will count instead of that assessment. The exam will be 90 minutes long and will cover materials from Week 1 to Week 5. You will require a non-programmable calculator for the duration of the exam. No dictionaries are allowed. The exam will be centrally timetabled and details of the final examination timetable will be made available on the ANU Timetabling website. You will require a non-programmable scientific calculator for the duration of the exam. The exam may include short-answer calculation questions and short-answer written questions. Further details on the mid-semester exam (duration and format) will be made available by the end of Week 4.
Assessment Task 3
Learning Outcomes: 1, 2
Assignment 2
Students are required to complete this assignment individually. This assignment is designed to cover materials from Week 1 to 6. It will include data analysis conducted in the R statistical environment and writing a report. Assignment 2 will be made available on Wattle by 3:00 pm on Thursday 17 April and it is to be submitted online on Wattle via Turnitin. The assignment is worth 10% of the overall score in the course and is compulsory. The assignment will be due in Week 9 by 3:00 pm on Friday 2 May. The assignment marks will be returned by 16 May. Short individual feedback may be given with marks and may be available from the tutor by appointment. Submission of the assignment after the due date will not be permitted unless an extension has been granted. If the assignment is not submitted by the due date, a mark of 0 will be awarded.
Assessment Task 4
Learning Outcomes: 1, 2, 3, 4, 5, 6
Final Exam
The final examination is worth 55% of the overall score in the course and will be held during the university examination period at the end of the semester. The final examination will be 120 minutes long and will cover the entire syllabus. The exam will be centrally timetabled and details of the final examination timetable will be made available on the ANU Timetabling website. You will require a non-programmable calculator for the duration of the exam. No dictionaries are allowed. The final exam may include short-answer calculation questions and short-answer written questions. Further details on the exam (exam duration and format) will be made available by the end of Week 10.
Academic Integrity
Academic integrity is a core part of the ANU culture as a community of scholars. The University’s students are an integral part of that community. The academic integrity principle commits all students to engage in academic work in ways that are consistent with, and actively support, academic integrity, and to uphold this commitment by behaving honestly, responsibly and ethically, and with respect and fairness, in scholarly practice.
The University expects all staff and students to be familiar with the academic integrity principle, the Academic Integrity Rule 2021, the Policy: Student Academic Integrity and Procedure: Student Academic Integrity, and to uphold high standards of academic integrity to ensure the quality and value of our qualifications.
The Academic Integrity Rule 2021 is a legal document that the University uses to promote academic integrity, and manage breaches of the academic integrity principle. The Policy and Procedure support the Rule by outlining overarching principles, responsibilities and processes. The Academic Integrity Rule 2021 commences on 1 December 2021 and applies to courses commencing on or after that date, as well as to research conduct occurring on or after that date. Prior to this, the Academic Misconduct Rule 2015 applies.
The University commits to assisting all students to understand how to engage in academic work in ways that are consistent with, and actively support academic integrity. All coursework students must complete the online Academic Integrity Module (Epigeum), and Higher Degree Research (HDR) students are required to complete research integrity training. The Academic Integrity website provides information about services available to assist students with their assignments, examinations and other learning activities, as well as understanding and upholding academic integrity.
Online Submission
You will be required to electronically sign a declaration as part of the submission of your assignment. Please keep a copy of the assignment for your records. Unless an exemption has been approved by the Associate Dean (Education) submission must be through Turnitin.
Hardcopy Submission
There is no hardcopy submission in the course.
Late Submission
No late submission of assessment tasks after the due date will be permitted unless an extension has been granted. If an assessment task is not submitted by the due date, a mark of 0 will be awarded.
Referencing Requirements
The Academic Skills website has information to assist you with your writing and assessments. The website includes information about Academic Integrity including referencing requirements for different disciplines. There is also information on Plagiarism and different ways to use source material. Any use of artificial intelligence must be properly referenced. Failure to properly cite use of Generative AI will be considered a breach of academic integrity.
Returning Assignments
Assignments marks will be made available to students online.
Extensions and Penalties
Extensions and late submission of assessment pieces are covered by the Student Assessment (Coursework) Policy and Procedure. Extensions may be granted for assessment pieces that are not examinations or take-home examinations. If you need an extension, you must request an extension in writing on or before the due date. If you have documented and appropriate medical evidence that demonstrates you were not able to request an extension on or before the due date, you may be able to request it after the due date.
Resubmission of Assignments
It will not be possible to resubmit assignments.
Privacy Notice
The ANU has made a number of third party, online, databases available for students to use. Use of each online database is conditional on student end users first agreeing to the database licensor’s terms of service and/or privacy policy. Students should read these carefully. In some cases student end users will be required to register an account with the database licensor and submit personal information, including their: first name; last name; ANU email address; and other information.In cases where student end users are asked to submit ‘content’ to a database, such as an assignment or short answers, the database licensor may only use the student’s ‘content’ in accordance with the terms of service – including any (copyright) licence the student grants to the database licensor. Any personal information or content a student submits may be stored by the licensor, potentially offshore, and will be used to process the database service in accordance with the licensors terms of service and/or privacy policy.
If any student chooses not to agree to the database licensor’s terms of service or privacy policy, the student will not be able to access and use the database. In these circumstances students should contact their lecturer to enquire about alternative arrangements that are available.
Distribution of grades policy
Academic Quality Assurance Committee monitors the performance of students, including attrition, further study and employment rates and grade distribution, and College reports on quality assurance processes for assessment activities, including alignment with national and international disciplinary and interdisciplinary standards, as well as qualification type learning outcomes.
Since first semester 1994, ANU uses a grading scale for all courses. This grading scale is used by all academic areas of the University.
Support for students
The University offers students support through several different services. You may contact the services listed below directly or seek advice from your Course Convener, Student Administrators, or your College and Course representatives (if applicable).
- ANU Health, safety & wellbeing for medical services, counselling, mental health and spiritual support
- ANU Accessibility for students with a disability or ongoing or chronic illness
- ANU Dean of Students for confidential, impartial advice and help to resolve problems between students and the academic or administrative areas of the University
- ANU Academic Skills supports you make your own decisions about how you learn and manage your workload.
- ANU Counselling promotes, supports and enhances mental health and wellbeing within the University student community.
- ANUSA supports and represents all ANU students
Convener
![]() |
|
|||
Research InterestsBroad interests in statistical theory and computation including nonparametric statistics |
Prof Andrew Wood
![]() |
|
Instructor
![]() |
|
|||
Research Interests |
Prof Andrew Wood
![]() |
|